A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes

Let $G$ be a finite group and $\pi_{e}(G)$ be the set of elements order of $G$. Let $k \in \pi_{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set nse($G$):=$\{ m_{k} | k \in \pi_{e}(G)\}$. Assume $p$ and $p-2$ are twin primes. We prove that if $G$ is a group such that nse($G$)=ns...

Full description

Bibliographic Details
Main Authors: Seyed Sadegh Salehi Amiri, Alireza Khalili Asboei
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2015-09-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/24335
_version_ 1818481023323734016
author Seyed Sadegh Salehi Amiri
Alireza Khalili Asboei
author_facet Seyed Sadegh Salehi Amiri
Alireza Khalili Asboei
author_sort Seyed Sadegh Salehi Amiri
collection DOAJ
description Let $G$ be a finite group and $\pi_{e}(G)$ be the set of elements order of $G$. Let $k \in \pi_{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set nse($G$):=$\{ m_{k} | k \in \pi_{e}(G)\}$. Assume $p$ and $p-2$ are twin primes. We prove that if $G$ is a group such that nse($G$)=nse($A_{p}$) and $p\in \pi (G)$, then $G \cong A_{p}$. As a consequence of our results we prove that $A_{p}$ is uniquely determined by its nse and order.
first_indexed 2024-12-10T11:29:57Z
format Article
id doaj.art-814249af7b5547eb8dbe7b82b5d67be0
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-12-10T11:29:57Z
publishDate 2015-09-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-814249af7b5547eb8dbe7b82b5d67be02022-12-22T01:50:38ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882015-09-0133223124010.5269/bspm.v33i2.2433511544A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primesSeyed Sadegh Salehi Amiri0Alireza Khalili Asboei1Azad University, Babol Department of MathematicsFarhangian University Department of MathematicsLet $G$ be a finite group and $\pi_{e}(G)$ be the set of elements order of $G$. Let $k \in \pi_{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set nse($G$):=$\{ m_{k} | k \in \pi_{e}(G)\}$. Assume $p$ and $p-2$ are twin primes. We prove that if $G$ is a group such that nse($G$)=nse($A_{p}$) and $p\in \pi (G)$, then $G \cong A_{p}$. As a consequence of our results we prove that $A_{p}$ is uniquely determined by its nse and order.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/24335Element orderset of the numbers of elements of the same orderalternating group
spellingShingle Seyed Sadegh Salehi Amiri
Alireza Khalili Asboei
A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes
Boletim da Sociedade Paranaense de Matemática
Element order
set of the numbers of elements of the same order
alternating group
title A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes
title_full A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes
title_fullStr A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes
title_full_unstemmed A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes
title_short A new characterization of $A_{p}$ with $p $ and $p-2$ are twin primes
title_sort new characterization of a p with p and p 2 are twin primes
topic Element order
set of the numbers of elements of the same order
alternating group
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/24335
work_keys_str_mv AT seyedsadeghsalehiamiri anewcharacterizationofapwithpandp2aretwinprimes
AT alirezakhaliliasboei anewcharacterizationofapwithpandp2aretwinprimes
AT seyedsadeghsalehiamiri newcharacterizationofapwithpandp2aretwinprimes
AT alirezakhaliliasboei newcharacterizationofapwithpandp2aretwinprimes