Photoacoustic Characterization of TiO<sub>2</sub> Thin-Films Deposited on Silicon Substrate Using Neural Networks

In this paper, the possibility of determining the thermal, elastic and geometric characteristics of a thin TiO<sub>2</sub> film deposited on a silicon substrate, with a thickness of 30 μm, in the frequency range of 20 to 20 kHz with neural networks were analysed. For this purpose, the ge...

Full description

Bibliographic Details
Main Authors: Katarina Lj Djordjević, Dragana K. Markushev, Marica N. Popović, Mioljub V. Nesić, Slobodanka P. Galović, Dragan V. Lukić, Dragan D. Markushev
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/7/2865
Description
Summary:In this paper, the possibility of determining the thermal, elastic and geometric characteristics of a thin TiO<sub>2</sub> film deposited on a silicon substrate, with a thickness of 30 μm, in the frequency range of 20 to 20 kHz with neural networks were analysed. For this purpose, the geometric (thickness), thermal (thermal diffusivity, coefficient of linear expansion) and electronic parameters of substrates were known and constant in the two-layer model, while the following nano-layer thin-film parameters were changed: thickness, expansion and thermal diffusivity. Predictions of these three parameters of the thin-film were analysed separately with three neural networks. All of them together were joined by a fourth neural network. It was shown that the neural network, which analysed all three parameters at the same time, achieved the highest accuracy, so the use of networks that provide predictions for only one parameter is less reliable. The obtained results showed that the application of neural networks in determining the thermoelastic properties of a thin film on a supporting substrate enables the estimation of its characteristics with great accuracy.
ISSN:1996-1944