Self-Supervised and Few-Shot Contrastive Learning Frameworks for Text Clustering
Contrastive learning is a promising approach to unsupervised learning, as it inherits the advantages of well-studied deep models without a dedicated and complex model design. In this paper, based on bidirectional encoder representations from transformers (BERT) and long-short term memory (LSTM) neur...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10210342/ |