Improving the Accuracy of Nearest-Neighbor Classification Using Principled Construction and Stochastic Sampling of Training-Set Centroids

A conceptually simple way to classify images is to directly compare test-set data and training-set data. The accuracy of this approach is limited by the method of comparison used, and by the extent to which the training-set data cover configuration space. Here we show that this coverage can be subst...

Full description

Bibliographic Details
Main Author: Stephen Whitelam
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/2/149