Nonexistence of soliton-like solutions for defocusing generalized KdV equations
We consider the global dynamics of the defocusing generalized KdV equation $$ \partial_t u + \partial_x^3 u = \partial_x(|u|^{p-1}u). $$ We use Tao's theorem [5] that the energy moves faster than the mass to prove a moment type dispersion estimate. As an application of the dispersion esti...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2015-02-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2015/51/abstr.html |