Linear sums and its convergence properties of Neumann-Bessel series(Neumann-Bessel级数的线性求和及其收敛性)
研究了 Neumann-Bessel级数部分和的收敛性及其逼近性质.为进一步改进其收敛性和逼近性质,首先从Neumann-Bessel 级数部分和出发,构造了一类新的积分算子,其中h =π/(n + 1),并证明了:若f(z)在Γ上连续,则,z∈Γ,其中“o”与n无关,ω(f,δ)为f(z)在Γ上的连续模.进而得出Hn(f;z)在单位圆周Γ(|z|=1)上一致地收敛到每个连续的f(z)且其逼近性质优于Fejér和σn(f,z)....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2005-03-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2005.32.2.124-126 |