Metric dimension of metric transform and wreath product

Let $(X,d)$ be a metric space. A non-empty subset $A$ of the set $X$ is called resolving set of the metric space $(X,d)$ if for two arbitrary not equal points $u,v$ from $X$ there exists an element $a$ from $A$, such that $d(u,a) \neq d(v,a)$. The smallest of cardinalities of resolving subsets of th...

Full description

Bibliographic Details
Main Author: B.S. Ponomarchuk
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2019-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/2119