On the Limitations of Physics-Informed Deep Learning: Illustrations Using First-Order Hyperbolic Conservation Law-Based Traffic Flow Models
Since its introduction in 2017, physics-informed deep learning (PIDL) has garnered growing popularity in understanding the systems governed by physical laws in terms of partial differential equations (PDEs). However, empirical evidence points to the limitations of PIDL for learning certain types of...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Open Journal of Intelligent Transportation Systems |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10105558/ |