Addressing Imbalance in Weakly Supervised Multi-Label Learning
Multi-label learning has been widely used in many fields to solve the problem of assigning multiple related categories to an instance. Nevertheless, the label for each training example is assumed complete in most of the current multi-label learning methods. As a matter of fact, it is often hard to o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8672066/ |