Summary: | The inability to locate device faults quickly and accurately has become prominent due to the large number of communication devices and the complex structure of secondary circuit networks in smart substations. Traditional methods are less efficient when diagnosing secondary equipment faults in smart substations, and deep learning methods have poor portability, high learning sample costs, and often require retraining a model. Therefore, a secondary equipment fault diagnosis method based on a graph attention network is proposed in this paper. All fault events are automatically represented as graph-structured data based on the K-nearest neighbors (KNNs) algorithm in terms of the feature information exhibited by the corresponding detection nodes when equipment faults occur. Then, a fault diagnosis model is established based on the graph attention network. Finally, partial intervals of a 220 kV intelligent substation are taken as an example to compare the fault localization effect of different methods. The results show that the method proposed in this paper has the advantages of higher localization accuracy, lower learning cost, and better robustness than the traditional machine learning and deep learning methods.
|