Ultralow Voltage Resistive Switching in Hafnium–Zirconium Oxide

Abstract Ultralow SET and RESET voltage are essential for high‐density, low‐power, and small heat dissipation nonvolatile random‐access memory (NVRAM) elements. A nanoscale polycrystalline Hf0.75Zr0.25O2 (HZO) thin films on Pt/Si substrate are fabricated and investigated for suitability for bipolar...

Full description

Bibliographic Details
Main Authors: M. Asif, Rajib K. Rakshit, Ashok Kumar
Format: Article
Language:English
Published: Wiley-VCH 2024-04-01
Series:Advanced Physics Research
Subjects:
Online Access:https://doi.org/10.1002/apxr.202300123
Description
Summary:Abstract Ultralow SET and RESET voltage are essential for high‐density, low‐power, and small heat dissipation nonvolatile random‐access memory (NVRAM) elements. A nanoscale polycrystalline Hf0.75Zr0.25O2 (HZO) thin films on Pt/Si substrate are fabricated and investigated for suitability for bipolar resistive switching. The device illustrates monoclinic and tetragonal/orthorhombic phases with weak ferroelectricity and robust resistive switching. Small remanent polarization (≈0.1 μC cm−2) may assist in the height reduction of barrier height and ease the electron for transport. Remarkably, the Al/HZO/Pt/Si device, consisting of thin films with 10 and 5 nm thicknesses, exhibits a switching voltage below −30 mV from a low‐resistance state (LRS) to a high‐resistance state (HRS). It shows a significant ROFF/RON ratio of 106, making it suitable for low power consumption and minimal heat dissipation devices. Moreover, the utilization of an ultrathin film (5 nm) results in an improved reduction (< 0.7 V) of the operating window at the positive voltage.  Direct tunneling and the Fowler–Nordheim tunneling model are performed in current–voltage (I–V) data to study the charge transportation behavior over a trapezoidal and triangular potential barrier. These results of the HZO candidate may stimulate the futuristic nonvolatile resistive random‐access memory (ReRAM) in the optoelectronic industry.
ISSN:2751-1200