Enhancing Accuracy of Semantic Relatedness Measurement by Word Single-Meaning Embeddings
We propose a lightweight algorithm of learning word single-meaning embeddings (WSME), by exploring WordNet synsets and Doc2vec document embeddings, to enhance the accuracy of semantic relatedness measurement. In our model, each polyseme is decomposed into a series of monosemous words with diverse Wo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9521506/ |