Yet Two Additional Large Numbers of Subuniverses of Finite Lattices
By a subuniverse, we mean a sublattice or the emptyset. We prove that the fourth largest number of subuniverses of an n-element lattice is 43 2n−6 for n ≥ 6, and the fifth largest number of subuniverses of an n-element lattice is 85 2n−7 for n ≥ 7. Also, we describe the n-element lattices with exact...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2019-12-01
|
Series: | Discussiones Mathematicae - General Algebra and Applications |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgaa.1309 |