Prediction of the Cu oxidation state from EELS and XAS spectra using supervised machine learning
Abstract Electron energy loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) provide detailed information about bonding, distributions and locations of atoms, and their coordination numbers and oxidation states. However, analysis of XAS/EELS data often relies on matching an unknown expe...
Những tác giả chính: | , , |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Nature Portfolio
2024-09-01
|
Loạt: | npj Computational Materials |
Truy cập trực tuyến: | https://doi.org/10.1038/s41524-024-01408-1 |