Summary: | A map construction method based on a collision probability model and an improved A* algorithm is proposed to address the issues of insufficient security in mobile robot map construction and path planning in complex environments. The method is based on modeling the asymmetry of paths, which complicates problem solving. Firstly, this article constructs a collision probability function model, and based on this model it is fused with the obstacle grid map, which is based on the grid method, to draw a collision probability grid map (CPGM) containing collision probability information. Secondly, incorporating the collision probability values from the CPGM into the actual cost function of the traditional A* algorithm improves the security of path planning in complex environments. The experimental results show that the improved A* algorithm decreases the percentage of dangerous nodes in complex environments by 69.23%, shortens the path planning length by 19.52%, reduces the search time by 16.8%, and reduces the number of turns by 46.67%. Therefore, the method in this paper solves the problem of traditional grid maps lacking security information and can plan a path with higher security and which is smoother, improving the security and robustness of mobile robot autonomous navigation in complex environments.
|