A machine learning enabled hybrid optimization framework for efficient coarse-graining of a model polymer
Abstract This work presents a framework governing the development of an efficient, accurate, and transferable coarse-grained (CG) model of a polyether material. The framework combines bottom-up and top-down approaches of coarse-grained model parameters by integrating machine learning (ML) with optim...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-11-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-022-00914-4 |