Mispronunciation Detection Using Deep Convolutional Neural Network Features and Transfer Learning-Based Model for Arabic Phonemes
Computer-assisted language learning (CALL) systems provide an automated framework to identify mispronunciation and give useful feedback. Traditionally, handcrafted acoustic-phonetic features are used to detect mispronunciation. From this line of research, this paper investigates the use of the deep...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8695703/ |