Multivariate water quality parameter prediction model based on hybrid neural network(基于复合神经网络的多元水质指标预测模型)
长江流域在我国水资源配置体系中具有重要地位,对其进行水质预测尤为重要。基于现有研究结果,结合循环神经网络(recurrent neural network,RNN)中的门控循环单元(gate recurrent unit,GRU)模型与全连接神经网络(fully connected neural network,FCNN),提出了改进的多元水质指标预测(MWQPP)模型,并用其预测长江流域水体的pH、溶解氧(DO)、高锰酸盐指数(CODMn)、氨氮(NH3-N)。基于长江流域2011—2018年23个水质监测点7 566条原始数据,经对比实验,证明了用MWQPP模型预测得到的均方根误差(RMS...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2022-05-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2022.03.013 |