Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
<p>Detection of atmospheric features in gridded datasets from numerical simulation models is typically done by means of rule-based algorithms. Recently, the feasibility of learning feature detection tasks using supervised learning with convolutional neural networks (CNNs) has been demonstrated...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2025-02-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/18/1017/2025/gmd-18-1017-2025.pdf |