Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine

Astrocytes, the most abundant glial cells in the central nervous system (CNS), sense synaptic activity and respond through the release of gliotransmitters, a process mediated by intracellular Ca2+ level changes and SNARE-dependent mechanisms. Ionotropic N-methyl-D-aspartate (NMDA) receptors, which a...

Full description

Bibliographic Details
Main Authors: Daniela Sofia Abreu, Joana I. Gomes, Filipa F. Ribeiro, Maria J. Diógenes, Ana M. Sebastião, Sandra H. Vaz
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-12-01
Series:Frontiers in Cellular Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fncel.2023.1282841/full
_version_ 1827592607007506432
author Daniela Sofia Abreu
Daniela Sofia Abreu
Joana I. Gomes
Joana I. Gomes
Filipa F. Ribeiro
Filipa F. Ribeiro
Maria J. Diógenes
Maria J. Diógenes
Ana M. Sebastião
Ana M. Sebastião
Sandra H. Vaz
Sandra H. Vaz
author_facet Daniela Sofia Abreu
Daniela Sofia Abreu
Joana I. Gomes
Joana I. Gomes
Filipa F. Ribeiro
Filipa F. Ribeiro
Maria J. Diógenes
Maria J. Diógenes
Ana M. Sebastião
Ana M. Sebastião
Sandra H. Vaz
Sandra H. Vaz
author_sort Daniela Sofia Abreu
collection DOAJ
description Astrocytes, the most abundant glial cells in the central nervous system (CNS), sense synaptic activity and respond through the release of gliotransmitters, a process mediated by intracellular Ca2+ level changes and SNARE-dependent mechanisms. Ionotropic N-methyl-D-aspartate (NMDA) receptors, which are activated by glutamate along with D-serine or glycine, play a crucial role in learning, memory, and synaptic plasticity. However, the precise impact of astrocyte-released D-serine on neuronal modulation remains insufficiently characterized. To address this, we have used the dominant negative SNARE (dnSNARE) mouse model, which selectively inhibits SNARE-dependent exocytosis from astrocytes. We recorded field excitatory postsynaptic potentials (fEPSPs) in CA3-CA1 synapses within hippocampal slices obtained from dnSNARE mice and wild-type (Wt) littermates. Our results demonstrate that hippocampal θ-burst long-term potentiation (LTP), a critical form of synaptic plasticity, is impaired in hippocampal slices from dnSNARE mice. Notably, this LTP impairment was rescued upon incubation with D-serine. To further investigate the involvement of astrocytes in D-serine-mediated mechanisms of LTP maintenance, we perfused hippocampal slices with L-serine – a substrate used by both neurons and astrocytes for D-serine production. The enhancement in LTP observed in dnSNARE mice was exclusively associated with D-serine presence, with no effects evident in the presence of L-serine. Additionally, both D- and L-serine reduced basal synaptic strength in the hippocampal slices of both Wt and dnSNARE mice. These results provide compelling evidence that distinct processes underlie the modulation of basal synaptic transmission and LTP through D-serine. Our findings underscore the pivotal contribution of astrocytes in D-serine-mediated processes that govern LTP establishment and basal transmission. This study not only provides essential insights into the intricate interplay between neurons and astrocytes but also emphasizes their collective role in shaping hippocampal synaptic function.
first_indexed 2024-03-09T01:57:01Z
format Article
id doaj.art-88bc3662c30d41e48db116c7ad3c61d4
institution Directory Open Access Journal
issn 1662-5102
language English
last_indexed 2024-03-09T01:57:01Z
publishDate 2023-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cellular Neuroscience
spelling doaj.art-88bc3662c30d41e48db116c7ad3c61d42023-12-08T14:18:12ZengFrontiers Media S.A.Frontiers in Cellular Neuroscience1662-51022023-12-011710.3389/fncel.2023.12828411282841Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serineDaniela Sofia Abreu0Daniela Sofia Abreu1Joana I. Gomes2Joana I. Gomes3Filipa F. Ribeiro4Filipa F. Ribeiro5Maria J. Diógenes6Maria J. Diógenes7Ana M. Sebastião8Ana M. Sebastião9Sandra H. Vaz10Sandra H. Vaz11Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, PortugalFaculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, PortugalAstrocytes, the most abundant glial cells in the central nervous system (CNS), sense synaptic activity and respond through the release of gliotransmitters, a process mediated by intracellular Ca2+ level changes and SNARE-dependent mechanisms. Ionotropic N-methyl-D-aspartate (NMDA) receptors, which are activated by glutamate along with D-serine or glycine, play a crucial role in learning, memory, and synaptic plasticity. However, the precise impact of astrocyte-released D-serine on neuronal modulation remains insufficiently characterized. To address this, we have used the dominant negative SNARE (dnSNARE) mouse model, which selectively inhibits SNARE-dependent exocytosis from astrocytes. We recorded field excitatory postsynaptic potentials (fEPSPs) in CA3-CA1 synapses within hippocampal slices obtained from dnSNARE mice and wild-type (Wt) littermates. Our results demonstrate that hippocampal θ-burst long-term potentiation (LTP), a critical form of synaptic plasticity, is impaired in hippocampal slices from dnSNARE mice. Notably, this LTP impairment was rescued upon incubation with D-serine. To further investigate the involvement of astrocytes in D-serine-mediated mechanisms of LTP maintenance, we perfused hippocampal slices with L-serine – a substrate used by both neurons and astrocytes for D-serine production. The enhancement in LTP observed in dnSNARE mice was exclusively associated with D-serine presence, with no effects evident in the presence of L-serine. Additionally, both D- and L-serine reduced basal synaptic strength in the hippocampal slices of both Wt and dnSNARE mice. These results provide compelling evidence that distinct processes underlie the modulation of basal synaptic transmission and LTP through D-serine. Our findings underscore the pivotal contribution of astrocytes in D-serine-mediated processes that govern LTP establishment and basal transmission. This study not only provides essential insights into the intricate interplay between neurons and astrocytes but also emphasizes their collective role in shaping hippocampal synaptic function.https://www.frontiersin.org/articles/10.3389/fncel.2023.1282841/fullastrocytegliotransmissiond-serinesynaptic plasticitytripartite synapse
spellingShingle Daniela Sofia Abreu
Daniela Sofia Abreu
Joana I. Gomes
Joana I. Gomes
Filipa F. Ribeiro
Filipa F. Ribeiro
Maria J. Diógenes
Maria J. Diógenes
Ana M. Sebastião
Ana M. Sebastião
Sandra H. Vaz
Sandra H. Vaz
Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine
Frontiers in Cellular Neuroscience
astrocyte
gliotransmission
d-serine
synaptic plasticity
tripartite synapse
title Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine
title_full Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine
title_fullStr Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine
title_full_unstemmed Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine
title_short Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine
title_sort astrocytes control hippocampal synaptic plasticity through the vesicular dependent release of d serine
topic astrocyte
gliotransmission
d-serine
synaptic plasticity
tripartite synapse
url https://www.frontiersin.org/articles/10.3389/fncel.2023.1282841/full
work_keys_str_mv AT danielasofiaabreu astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT danielasofiaabreu astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT joanaigomes astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT joanaigomes astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT filipafribeiro astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT filipafribeiro astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT mariajdiogenes astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT mariajdiogenes astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT anamsebastiao astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT anamsebastiao astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT sandrahvaz astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine
AT sandrahvaz astrocytescontrolhippocampalsynapticplasticitythroughthevesiculardependentreleaseofdserine