The Legionella pneumophila effector DenR hijacks the host NRas proto-oncoprotein to downregulate MAPK signaling

Summary: Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR...

Full description

Bibliographic Details
Main Authors: Stephanie S. Lehman, Chad D. Williamson, Trisha Tucholski, Nicole A. Ellis, Sabrina Bouchard, Michal Jarnik, Morgan Allen, Aleksandra Nita-Lazar, Matthias P. Machner
Format: Article
Language:English
Published: Elsevier 2024-04-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124724003619
Description
Summary:Summary: Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.
ISSN:2211-1247