Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1

Abstract The conformational ensembles of G protein-coupled receptors (GPCRs) include inactive and active states. Spectroscopy techniques, including NMR, show that agonists, antagonists and other ligands shift the ensemble toward specific states depending on the pharmacological efficacy of the ligand...

Full description

Bibliographic Details
Main Authors: Kazem Asadollahi, Sunnia Rajput, Lazarus Andrew de Zhang, Ching-Seng Ang, Shuai Nie, Nicholas A. Williamson, Michael D. W. Griffin, Ross A. D. Bathgate, Daniel J. Scott, Thomas R. Weikl, Guy N. L. Jameson, Paul R. Gooley
Format: Article
Language:English
Published: Nature Portfolio 2023-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-44010-7
_version_ 1797397885697916928
author Kazem Asadollahi
Sunnia Rajput
Lazarus Andrew de Zhang
Ching-Seng Ang
Shuai Nie
Nicholas A. Williamson
Michael D. W. Griffin
Ross A. D. Bathgate
Daniel J. Scott
Thomas R. Weikl
Guy N. L. Jameson
Paul R. Gooley
author_facet Kazem Asadollahi
Sunnia Rajput
Lazarus Andrew de Zhang
Ching-Seng Ang
Shuai Nie
Nicholas A. Williamson
Michael D. W. Griffin
Ross A. D. Bathgate
Daniel J. Scott
Thomas R. Weikl
Guy N. L. Jameson
Paul R. Gooley
author_sort Kazem Asadollahi
collection DOAJ
description Abstract The conformational ensembles of G protein-coupled receptors (GPCRs) include inactive and active states. Spectroscopy techniques, including NMR, show that agonists, antagonists and other ligands shift the ensemble toward specific states depending on the pharmacological efficacy of the ligand. How receptors recognize ligands and the kinetic mechanism underlying this population shift is poorly understood. Here, we investigate the kinetic mechanism of neurotensin recognition by neurotensin receptor 1 (NTS1) using 19F-NMR, hydrogen-deuterium exchange mass spectrometry and stopped-flow fluorescence spectroscopy. Our results indicate slow-exchanging conformational heterogeneity on the extracellular surface of ligand-bound NTS1. Numerical analysis of the kinetic data of neurotensin binding to NTS1 shows that ligand recognition follows an induced-fit mechanism, in which conformational changes occur after neurotensin binding. This approach is applicable to other GPCRs to provide insight into the kinetic regulation of ligand recognition by GPCRs.
first_indexed 2024-03-09T01:16:40Z
format Article
id doaj.art-8a32b17098464f42af0a3f2a34e66fbb
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-09T01:16:40Z
publishDate 2023-12-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-8a32b17098464f42af0a3f2a34e66fbb2023-12-10T12:25:00ZengNature PortfolioNature Communications2041-17232023-12-0114111310.1038/s41467-023-44010-7Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1Kazem Asadollahi0Sunnia Rajput1Lazarus Andrew de Zhang2Ching-Seng Ang3Shuai Nie4Nicholas A. Williamson5Michael D. W. Griffin6Ross A. D. Bathgate7Daniel J. Scott8Thomas R. Weikl9Guy N. L. Jameson10Paul R. Gooley11Department of Biochemistry and Pharmacology, University of MelbourneBio21 Molecular Science and Biotechnology Institute, University of MelbourneThe Florey, University of MelbourneBio21 Molecular Science and Biotechnology Institute, University of MelbourneBio21 Molecular Science and Biotechnology Institute, University of MelbourneBio21 Molecular Science and Biotechnology Institute, University of MelbourneDepartment of Biochemistry and Pharmacology, University of MelbourneDepartment of Biochemistry and Pharmacology, University of MelbourneDepartment of Biochemistry and Pharmacology, University of MelbourneDepartment of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesBio21 Molecular Science and Biotechnology Institute, University of MelbourneDepartment of Biochemistry and Pharmacology, University of MelbourneAbstract The conformational ensembles of G protein-coupled receptors (GPCRs) include inactive and active states. Spectroscopy techniques, including NMR, show that agonists, antagonists and other ligands shift the ensemble toward specific states depending on the pharmacological efficacy of the ligand. How receptors recognize ligands and the kinetic mechanism underlying this population shift is poorly understood. Here, we investigate the kinetic mechanism of neurotensin recognition by neurotensin receptor 1 (NTS1) using 19F-NMR, hydrogen-deuterium exchange mass spectrometry and stopped-flow fluorescence spectroscopy. Our results indicate slow-exchanging conformational heterogeneity on the extracellular surface of ligand-bound NTS1. Numerical analysis of the kinetic data of neurotensin binding to NTS1 shows that ligand recognition follows an induced-fit mechanism, in which conformational changes occur after neurotensin binding. This approach is applicable to other GPCRs to provide insight into the kinetic regulation of ligand recognition by GPCRs.https://doi.org/10.1038/s41467-023-44010-7
spellingShingle Kazem Asadollahi
Sunnia Rajput
Lazarus Andrew de Zhang
Ching-Seng Ang
Shuai Nie
Nicholas A. Williamson
Michael D. W. Griffin
Ross A. D. Bathgate
Daniel J. Scott
Thomas R. Weikl
Guy N. L. Jameson
Paul R. Gooley
Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
Nature Communications
title Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
title_full Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
title_fullStr Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
title_full_unstemmed Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
title_short Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
title_sort unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
url https://doi.org/10.1038/s41467-023-44010-7
work_keys_str_mv AT kazemasadollahi unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT sunniarajput unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT lazarusandrewdezhang unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT chingsengang unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT shuainie unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT nicholasawilliamson unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT michaeldwgriffin unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT rossadbathgate unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT danieljscott unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT thomasrweikl unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT guynljameson unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1
AT paulrgooley unravellingthemechanismofneurotensinrecognitionbyneurotensinreceptor1