Recent Advances in Variational Autoencoders With Representation Learning for Biomedical Informatics: A Survey
Variational autoencoders (VAEs) are deep latent space generative models that have been immensely successful in multiple exciting applications in biomedical informatics such as molecular design, protein design, medical image classification and segmentation, integrated multi-omics data analyses, and l...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9311619/ |