Deep Learning Neural Network-Based Detection of Wafer Marking Character Recognition in Complex Backgrounds

Wafer characters are used to record the transfer of important information in industrial production and inspection. Wafer character recognition is usually used in the traditional template matching method. However, the accuracy and robustness of the template matching method for detecting complex image...

Full description

Bibliographic Details
Main Authors: Yufan Zhao, Jun Xie, Peiyu He
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/20/4293
Description
Summary:Wafer characters are used to record the transfer of important information in industrial production and inspection. Wafer character recognition is usually used in the traditional template matching method. However, the accuracy and robustness of the template matching method for detecting complex images are low, which affects production efficiency. An improved model based on YOLO v7-Tiny is proposed for wafer character recognition in complex backgrounds to enhance detection accuracy. In order to improve the robustness of the detection system, the images required for model training and testing are augmented by brightness, rotation, blurring, and cropping. Several improvements were adopted in the improved YOLO model, including an optimized spatial channel attention model (CBAM-L) for better feature extraction capability, improved neck structure based on BiFPN to enhance the feature fusion capability, and the addition of angle parameter to adapt to tilted character detection. The experimental results showed that the model had a value of 99.44% for <i>mAP</i>@0.5 and an <i>F</i>1 score of 0.97. In addition, the proposed model with very few parameters was suitable for embedded industrial devices with small memory, which was crucial for reducing the hardware cost. The results showed that the comprehensive performance of the improved model was better than several existing state-of-the-art detection models.
ISSN:2079-9292