Transformation of Non-Euclidean Space to Euclidean Space for Efficient Learning of Singular Vectors

Singular value decomposition (SVD) is a popular technique to extract essential information by reducing the dimension of a feature set. SVD is able to analyze a vast matrix in spite of a relatively low computational cost. However, singular vectors produced by SVD have been seldom used in convolutiona...

詳細記述

書誌詳細
主要な著者: Seunghyun Lee, Byung Cheol Song
フォーマット: 論文
言語:English
出版事項: IEEE 2020-01-01
シリーズ:IEEE Access
主題:
オンライン・アクセス:https://ieeexplore.ieee.org/document/9137281/