Transformation of Non-Euclidean Space to Euclidean Space for Efficient Learning of Singular Vectors
Singular value decomposition (SVD) is a popular technique to extract essential information by reducing the dimension of a feature set. SVD is able to analyze a vast matrix in spite of a relatively low computational cost. However, singular vectors produced by SVD have been seldom used in convolutiona...
主要な著者: | , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
IEEE
2020-01-01
|
シリーズ: | IEEE Access |
主題: | |
オンライン・アクセス: | https://ieeexplore.ieee.org/document/9137281/ |