Harnessing Pentameric Scaffold of Cholera Toxin B (CTB) for Design of Subvirion Recombinant Dengue Virus Vaccine

Dengue virus is an enveloped virus with an icosahedral assembly of envelope proteins (E). The E proteins are arranged as a head-to-tail homodimer, and domain III (EDIII) is placed at the edge of the dimer, converging to a pentamer interface. For a structure-based approach, cholera toxin B (CTB) was...

Full description

Bibliographic Details
Main Authors: Jemin Sung, Yucheol Cheong, Young-Seok Kim, Jina Ahn, Myung Hyun Sohn, Sanguine Byun, Baik-Lin Seong
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Vaccines
Subjects:
Online Access:https://www.mdpi.com/2076-393X/12/1/92
Description
Summary:Dengue virus is an enveloped virus with an icosahedral assembly of envelope proteins (E). The E proteins are arranged as a head-to-tail homodimer, and domain III (EDIII) is placed at the edge of the dimer, converging to a pentamer interface. For a structure-based approach, cholera toxin B (CTB) was harnessed as a structural scaffold for the five-fold symmetry of EDIII. Pivoted by an RNA-mediated chaperone for the protein folding and assembly, CTB-EDIII of dengue serotype 1 (DV1) was successfully produced as soluble pentamers in an <i>E. coli</i> host with a high yield of about 28 mg/L. Immunization of mice with CTB-DV1EDIII elicited increased levels of neutralizing antibodies against infectious viruses compared to the control group immunized with DV1EDIII without CTB fusion. IgG isotype switching into a balanced Th1/Th2 response was also observed, probably triggered by the intrinsic adjuvant activity of CTB. Confirming the immune-enhancing potential of CTB in stabilizing the pentamer assembly of EDIII, this study introduces a low-cost bacterial production platform designed to augment the soluble production of subunit vaccine candidates, particularly those targeting flaviviruses.
ISSN:2076-393X