Electron injection-induced effects in Si-doped β-Ga2O3

The impact of electron injection, using 10 keV beam of a Scanning Electron Microscope, on minority carrier transport in Si-doped β-Ga2O3 was studied for temperatures ranging from room to 120°C. In-situ Electron Beam-Induced Current technique was employed to determine the diffusion length of minority...

Full description

Bibliographic Details
Main Authors: Sushrut Modak, Jonathan Lee, Leonid Chernyak, Jiancheng Yang, Fan Ren, Stephen J. Pearton, Sergey Khodorov, Igor Lubomirsky
Format: Article
Language:English
Published: AIP Publishing LLC 2019-01-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5079730
Description
Summary:The impact of electron injection, using 10 keV beam of a Scanning Electron Microscope, on minority carrier transport in Si-doped β-Ga2O3 was studied for temperatures ranging from room to 120°C. In-situ Electron Beam-Induced Current technique was employed to determine the diffusion length of minority holes as a function of temperature and duration of electron injection. The experiments revealed a pronounced elongation of hole diffusion length with increasing duration of injection. The activation energy, associated with the electron injection-induced elongation of the diffusion length, was determined at ∼ 74 meV and matches the previous independent studies. It was additionally discovered that an increase of the diffusion length in the regions affected by electron injection is accompanied by a simultaneous decrease of cathodoluminescence intensity. Both effects were attributed to increasing non-equilibrium hole lifetime in the valence band of β-Ga2O3 semiconductor.
ISSN:2158-3226