Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs
Let $(X, \Delta )$ be a compact Kähler klt pair, where $K_X + \Delta $ is ample or numerically trivial, and $\Delta $ has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for $(X, \Delta )$, then its orbifold universal cover is either the unit ball (ample...
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Académie des sciences
2024-06-01
|
Schriftenreihe: | Comptes Rendus. Mathématique |
Schlagworte: | |
Online Zugang: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/ |