Two classes of ideals determined by integer-valued polynomials
If D is a domain with quotient field K, let Int(D) = {f(X) ∈ K[X] | f(d) ∈ D for every d ∈ D} be the ring of integer-valued polynomials over D. It is well known that the binomial polynomials GX n H = X(X−1)...(X−n+1) n! form a basis of Int(ZZ) as a free ZZ-module and that for every prime integer p,...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
1996-10-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1996(4)/625-636.pdf |