Two classes of ideals determined by integer-valued polynomials

If D is a domain with quotient field K, let Int(D) = {f(X) ∈ K[X] | f(d) ∈ D for every d ∈ D} be the ring of integer-valued polynomials over D. It is well known that the binomial polynomials GX n H = X(X−1)...(X−n+1) n! form a basis of Int(ZZ) as a free ZZ-module and that for every prime integer p,...

Full description

Bibliographic Details
Main Authors: P.J. CAHEN, S.T. CHAPMAN, K. ROEGNER, W.W. SMITH
Format: Article
Language:English
Published: Sapienza Università Editrice 1996-10-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1996(4)/625-636.pdf