Solvable Model for the Linear Separability of Structured Data

Linear separability, a core concept in supervised machine learning, refers to whether the labels of a data set can be captured by the simplest possible machine: a linear classifier. In order to quantify linear separability beyond this single bit of information, one needs models of data structure par...

Full description

Bibliographic Details
Main Author: Marco Gherardi
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/3/305