Torque Allocation of Hybrid Electric Trucks for Drivability and Transient Emissions Reduction

This paper aims at investigating powertrain behaviour, especially in transient dynamic responses, using a nonlinear truck vehicle dynamic model with a parallel hybrid configuration. A power split control was designed to achieve the desired drivability performance, with a focus on NOx emissions. The...

Full description

Bibliographic Details
Main Authors: Luca Dimauro, Antonio Tota, Enrico Galvagno, Mauro Velardocchia
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/6/3704
Description
Summary:This paper aims at investigating powertrain behaviour, especially in transient dynamic responses, using a nonlinear truck vehicle dynamic model with a parallel hybrid configuration. A power split control was designed to achieve the desired drivability performance, with a focus on NOx emissions. The controller was characterized by high-level model-based logic used to elaborate the total powertrain torque required, and a low-level allocation strategy for splitting power between the engine and the electric motor. The final task was to enhance vehicle drivability based on driver requests, with the goal of reducing—in a hybrid configuration—transient diesel engine emissions when compared to a conventional pure thermal engine powertrain. Different parameters were investigated for the assessment of powertrain performance, in terms of external input disturbance rejection and NOx emissions reduction. The investigation of torque allocation performance was limited to the simulation of a Tip-in manoeuvre, which showed a satisfying trade-off between vehicle drivability and transient emissions.
ISSN:2076-3417