A Novel Time–Frequency Feature Fusion Approach for Robust Fault Detection in a Marine Main Engine
Ensuring operational reliability in machinery requires accurate fault detection. While time-domain vibration pulsation signals are intuitive for pattern recognition and feature extraction, downsampling can reduce analytical complexity, but may result in low-precision data, affecting fault detection...
Hauptverfasser: | Hong Je-Gal, Seung-Jin Lee, Jeong-Hyun Yoon, Hyun-Suk Lee, Jung-Hee Yang, Sewon Kim |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
MDPI AG
2023-08-01
|
Schriftenreihe: | Journal of Marine Science and Engineering |
Schlagworte: | |
Online Zugang: | https://www.mdpi.com/2077-1312/11/8/1577 |
Ähnliche Einträge
Ähnliche Einträge
-
Time-Series Explanatory Fault Prediction Framework for Marine Main Engine Using Explainable Artificial Intelligence
von: Hong Je-Gal, et al.
Veröffentlicht: (2024-07-01) -
Fault Diagnosis Approach of Main Drive Chain in Wind Turbine Based on Data Fusion
von: Zhen Xu, et al.
Veröffentlicht: (2021-06-01) -
A fault diagnosis system of mine main ventilator
von: WANG Haoyu, et al.
Veröffentlicht: (2017-06-01) -
Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM
von: Christian Tutivén, et al.
Veröffentlicht: (2022-06-01) -
Slope instabilities and evolution of tectonic geomorphology along the strike of the Main Boundary Thrust zone in the western Himalaya, India
von: Anirudh Datta, et al.
Veröffentlicht: (2024-03-01)