Smart Augmentation Learning an Optimal Data Augmentation Strategy
A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2017-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/7906545/ |