Non-contrast CT synthesis using patch-based cycle-consistent generative adversarial network (Cycle-GAN) for radiomics and deep learning in the era of COVID-19
Abstract Handcrafted and deep learning (DL) radiomics are popular techniques used to develop computed tomography (CT) imaging-based artificial intelligence models for COVID-19 research. However, contrast heterogeneity from real-world datasets may impair model performance. Contrast-homogenous dataset...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-06-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-023-36712-1 |