Summary: | The [(DMSO)2H]trans-[RuCl4 (DMSO)2] complex presents an axial symmetry in the solid state and its EPR spectrum shows two g values (g<FONT FACE="Symbol">^</FONT > or = 2,35 e g<FONT FACE="Symbol">//</FONT > or = 1,87). The complex [NH4]trans-[RuCl4(DMSO) 2] presents only one-g value in the solid state EPR spectrum indicating coupling of micro-aggregates. In a fresh solution of MeOH it is possible to detect the [NH4]trans-[RuCl4(DMSO)(MeOH)] and [RuCl3(DMSO)(MeOH)2] by EPR. After approximately 15 h only the latter complex is detected in solution. These species are also detected by cyclic voltammetry and the [RuCl2(DMSO)(MeOH)3] complex is generated electrochemically from [RuCl3(DMSO)(MeOH)2]. The [pyH]trans-[RuCl4(DMSO)(py)] was obtained from the reaction of [(DMSO)2H]trans-[RuCl4(DMSO) 2] with py, and was crystallized in the space group P (No.2), Z=2 with a=7.7608(1), b=8.5451(1), c=15.095(5)Å, beta=79.33(2)º. The structure was solved by Patterson and difference Fourier techniques and refined to R = 0.0886. EPR (T = -160 ºC) data confirmed the presence of the paramagnetically active Ru(III), consistent with the axial symmetry of the complex. The cyclic voltamogram of the pyridine complex shows a redox potential with E1/2 = - 0.15 V (vs. Ag/AgCl).
|