Constructing Cycles in Isogeny Graphs of Supersingular Elliptic Curves
Loops and cycles play an important role in computing endomorphism rings of supersingular elliptic curves and related cryptosystems. For a supersingular elliptic curve E defined over 𝔽p2, if an imaginary quadratic order O can be embedded in End(E) and a prime L splits into two principal ideals in O,...
Päätekijät: | Xiao Guanju, Luo Lixia, Deng Yingpu |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
De Gruyter
2021-05-01
|
Sarja: | Journal of Mathematical Cryptology |
Aiheet: | |
Linkit: | https://doi.org/10.1515/jmc-2020-0029 |
Samankaltaisia teoksia
-
Orienting supersingular isogeny graphs
Tekijä: Colò Leonardo, et al.
Julkaistu: (2020-10-01) -
Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies
Tekijä: De Feo Luca, et al.
Julkaistu: (2014-09-01) -
On the supersingular GPST attack
Tekijä: Basso Andrea, et al.
Julkaistu: (2021-09-01) -
Constructing elliptic curve isogenies in quantum subexponential time
Tekijä: Childs Andrew, et al.
Julkaistu: (2014-02-01) -
Isolated elliptic curves and the MOV attack
Tekijä: Scholl Travis
Julkaistu: (2017-10-01)