Convergence Theorems for Fixed Points of Multivalued Strictly Pseudocontractive Mappings in Hilbert Spaces
Let K be a nonempty, closed, and convex subset of a real Hilbert space H. Suppose that T:K→2K is a multivalued strictly pseudocontractive mapping such that F(T)≠∅. A Krasnoselskii-type iteration sequence {xn} is constructed and shown to be an approximate fixed point sequence of T; that is, limn→∞d(...
Päätekijät: | , , , |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
Wiley
2013-01-01
|
Sarja: | Abstract and Applied Analysis |
Linkit: | http://dx.doi.org/10.1155/2013/629468 |