An Enhanced Contrastive Ensemble Learning Method for Anomaly Sound Detection
This paper proposes an enhanced contrastive ensemble learning method for anomaly sound detection. The proposed method achieves approximately 6% in the AUC metric in some categories and achieves state-of-the-art performance among self-supervised models on multiple benchmark datasets. The proposed met...
Główni autorzy: | , , |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
MDPI AG
2025-02-01
|
Seria: | Applied Sciences |
Hasła przedmiotowe: | |
Dostęp online: | https://www.mdpi.com/2076-3417/15/3/1624 |