Household Appliance Classification Using Lower Odd-Numbered Harmonics and the Bagging Decision Tree
Non-Intrusive Load Monitoring (NILM) systems have gained popularity in recent years for saving more energy. To reduce sensing infrastructure costs, NILM monitors the electrical loads based on a machine learning method. We propose a novel approach to improve the performance of classifying household a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9042316/ |