LS-LSTM-AE: Power load forecasting via Long-Short series features and LSTM-Autoencoder
Aiming at weak representation ability and severe loss of time series features in the traditional methods when facing large-scale and complex power load forecasting tasks, an LSTM-Autoencoder model that integrates long-term and short-term features of the samples is proposed for load forecasting. The...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-04-01
|
Series: | Energy Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352484721013196 |