Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics

Abstract Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post‐translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved...

Full description

Bibliographic Details
Main Authors: Amelia Rojas‐Gómez, Sara G. Dosil, Francisco J. Chichón, Nieves Fernández‐Gallego, Alessia Ferrarini, Enrique Calvo, Diego Calzada‐Fraile, Silvia Requena, Joaquin Otón, Alvaro Serrano, Rocio Tarifa, Montserrat Arroyo, Andrea Sorrentino, Eva Pereiro, Jesus Vázquez, José M. Valpuesta, Francisco Sánchez‐Madrid, Noa B. Martín‐Cófreces
Format: Article
Language:English
Published: Wiley 2023-06-01
Series:Journal of Extracellular Vesicles
Subjects:
Online Access:https://doi.org/10.1002/jev2.12333
_version_ 1797797953088258048
author Amelia Rojas‐Gómez
Sara G. Dosil
Francisco J. Chichón
Nieves Fernández‐Gallego
Alessia Ferrarini
Enrique Calvo
Diego Calzada‐Fraile
Silvia Requena
Joaquin Otón
Alvaro Serrano
Rocio Tarifa
Montserrat Arroyo
Andrea Sorrentino
Eva Pereiro
Jesus Vázquez
José M. Valpuesta
Francisco Sánchez‐Madrid
Noa B. Martín‐Cófreces
author_facet Amelia Rojas‐Gómez
Sara G. Dosil
Francisco J. Chichón
Nieves Fernández‐Gallego
Alessia Ferrarini
Enrique Calvo
Diego Calzada‐Fraile
Silvia Requena
Joaquin Otón
Alvaro Serrano
Rocio Tarifa
Montserrat Arroyo
Andrea Sorrentino
Eva Pereiro
Jesus Vázquez
José M. Valpuesta
Francisco Sánchez‐Madrid
Noa B. Martín‐Cófreces
author_sort Amelia Rojas‐Gómez
collection DOAJ
description Abstract Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post‐translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell‐content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid‐dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule‐based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.
first_indexed 2024-03-13T03:56:05Z
format Article
id doaj.art-92e772c6f8d44bdbb9870fce780f13ea
institution Directory Open Access Journal
issn 2001-3078
language English
last_indexed 2024-03-13T03:56:05Z
publishDate 2023-06-01
publisher Wiley
record_format Article
series Journal of Extracellular Vesicles
spelling doaj.art-92e772c6f8d44bdbb9870fce780f13ea2023-06-22T05:06:00ZengWileyJournal of Extracellular Vesicles2001-30782023-06-01126n/an/a10.1002/jev2.12333Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamicsAmelia Rojas‐Gómez0Sara G. Dosil1Francisco J. Chichón2Nieves Fernández‐Gallego3Alessia Ferrarini4Enrique Calvo5Diego Calzada‐Fraile6Silvia Requena7Joaquin Otón8Alvaro Serrano9Rocio Tarifa10Montserrat Arroyo11Andrea Sorrentino12Eva Pereiro13Jesus Vázquez14José M. Valpuesta15Francisco Sánchez‐Madrid16Noa B. Martín‐Cófreces17Immunology Service Hospital Universitario de la Princesa, UAM, IIS‐IP Madrid SpainImmunology Service Hospital Universitario de la Princesa, UAM, IIS‐IP Madrid SpainCryoelectron Microscopy Unit Centro Nacional de Biotecnología (CNB‐CSIC) Madrid SpainImmunology Service Hospital Universitario de la Princesa, UAM, IIS‐IP Madrid SpainLaboratory of Cardiovascular Proteomics Fundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos III Madrid SpainLaboratory of Cardiovascular Proteomics Fundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos III Madrid SpainArea of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos III Madrid SpainImmunology Service Hospital Universitario de la Princesa, UAM, IIS‐IP Madrid SpainStructural Studies Division MRC Laboratory of Molecular Biology Cambridge UKArea of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos III Madrid SpainLaboratory of Cardiovascular Proteomics Fundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos III Madrid SpainImmunology Service Hospital Universitario de la Princesa, UAM, IIS‐IP Madrid SpainALBA Synchrotron Light Source Barcelona SpainALBA Synchrotron Light Source Barcelona SpainLaboratory of Cardiovascular Proteomics Fundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos III Madrid SpainDepartment of Macromolecular Structure Centro Nacional de Biotecnología (CNB‐CSIC) Madrid SpainImmunology Service Hospital Universitario de la Princesa, UAM, IIS‐IP Madrid SpainImmunology Service Hospital Universitario de la Princesa, UAM, IIS‐IP Madrid SpainAbstract Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post‐translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell‐content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid‐dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule‐based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.https://doi.org/10.1002/jev2.12333CCTchaperoninextracellular vesiclelipid dropletlipidomicperoxisome
spellingShingle Amelia Rojas‐Gómez
Sara G. Dosil
Francisco J. Chichón
Nieves Fernández‐Gallego
Alessia Ferrarini
Enrique Calvo
Diego Calzada‐Fraile
Silvia Requena
Joaquin Otón
Alvaro Serrano
Rocio Tarifa
Montserrat Arroyo
Andrea Sorrentino
Eva Pereiro
Jesus Vázquez
José M. Valpuesta
Francisco Sánchez‐Madrid
Noa B. Martín‐Cófreces
Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics
Journal of Extracellular Vesicles
CCT
chaperonin
extracellular vesicle
lipid droplet
lipidomic
peroxisome
title Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics
title_full Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics
title_fullStr Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics
title_full_unstemmed Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics
title_short Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics
title_sort chaperonin cct controls extracellular vesicle production and cell metabolism through kinesin dynamics
topic CCT
chaperonin
extracellular vesicle
lipid droplet
lipidomic
peroxisome
url https://doi.org/10.1002/jev2.12333
work_keys_str_mv AT ameliarojasgomez chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT saragdosil chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT franciscojchichon chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT nievesfernandezgallego chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT alessiaferrarini chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT enriquecalvo chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT diegocalzadafraile chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT silviarequena chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT joaquinoton chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT alvaroserrano chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT rociotarifa chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT montserratarroyo chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT andreasorrentino chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT evapereiro chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT jesusvazquez chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT josemvalpuesta chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT franciscosanchezmadrid chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics
AT noabmartincofreces chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics