On The Group of Strong Symplectic Homeomorphisms

We generalize the “hamiltonian topology” on hamiltonian isotopies to an intrinsic “symplectic topology” on the space of symplectic isotopies. We use it to define the group SSympeo (M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of hamiltonian homeo...

Full description

Bibliographic Details
Main Author: AUGUSTIN BANYAGA
Format: Article
Language:English
Published: Universidad de La Frontera 2010-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004
_version_ 1828191940471947264
author AUGUSTIN BANYAGA
author_facet AUGUSTIN BANYAGA
author_sort AUGUSTIN BANYAGA
collection DOAJ
description We generalize the “hamiltonian topology” on hamiltonian isotopies to an intrinsic “symplectic topology” on the space of symplectic isotopies. We use it to define the group SSympeo (M,&#969;) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,&#969;) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,&#969;) is arcwise connected, is contained in the identity component of Sympeo(M,&#969;); it contains Hameo(M,&#969;) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,&#969;), SSympeo(M,&#969;)] is contained in Hameo(M,&#969;).<br>Generalizamos la “topología hamiltoniano” sobre isotopias hamiltonianas para una “topología simpléctica” intrinseca en el espacio de isotopias simplécticas. Nosotros usamos esto para definir el grupo SSympeo(M,&#969;) de homeomorfismos simplécticos fuertes, el qual generaliza el grupo Hameo(M,&#969;) de homeomorfismos hamiltonianos introducido por Oh y Müller. El grupo SSympeo(M,&#969;) es conexo por arcos, es contenido en la componente identidad de Sympeo(H,&#969;); este contiene Hameo(M,&#969;) como un subgrupo normal y coincide con este cuando M es simplemente conexa. Finalmente su subgrupo conmutador [SSympeo(M,&#969;), SSympeo(M,&#969;)] es contenido en Hameo(M,&#969;).
first_indexed 2024-04-12T08:47:34Z
format Article
id doaj.art-93ac8d8d38314df69e2de40fbdade15d
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-04-12T08:47:34Z
publishDate 2010-01-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-93ac8d8d38314df69e2de40fbdade15d2022-12-22T03:39:39ZengUniversidad de La FronteraCubo0716-77760719-06462010-01-011234969On The Group of Strong Symplectic HomeomorphismsAUGUSTIN BANYAGAWe generalize the “hamiltonian topology” on hamiltonian isotopies to an intrinsic “symplectic topology” on the space of symplectic isotopies. We use it to define the group SSympeo (M,&#969;) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,&#969;) of hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,&#969;) is arcwise connected, is contained in the identity component of Sympeo(M,&#969;); it contains Hameo(M,&#969;) as a normal subgroup and coincides with it when M is simply connected. Finally its commutator subgroup [SSympeo(M,&#969;), SSympeo(M,&#969;)] is contained in Hameo(M,&#969;).<br>Generalizamos la “topología hamiltoniano” sobre isotopias hamiltonianas para una “topología simpléctica” intrinseca en el espacio de isotopias simplécticas. Nosotros usamos esto para definir el grupo SSympeo(M,&#969;) de homeomorfismos simplécticos fuertes, el qual generaliza el grupo Hameo(M,&#969;) de homeomorfismos hamiltonianos introducido por Oh y Müller. El grupo SSympeo(M,&#969;) es conexo por arcos, es contenido en la componente identidad de Sympeo(H,&#969;); este contiene Hameo(M,&#969;) como un subgrupo normal y coincide con este cuando M es simplemente conexa. Finalmente su subgrupo conmutador [SSympeo(M,&#969;), SSympeo(M,&#969;)] es contenido en Hameo(M,&#969;).http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004Hamiltonian homeomorphismshamiltonian topologysymplectic topologystromg symplectic homeomorphismsC0 symplectic topology
spellingShingle AUGUSTIN BANYAGA
On The Group of Strong Symplectic Homeomorphisms
Cubo
Hamiltonian homeomorphisms
hamiltonian topology
symplectic topology
stromg symplectic homeomorphisms
C0 symplectic topology
title On The Group of Strong Symplectic Homeomorphisms
title_full On The Group of Strong Symplectic Homeomorphisms
title_fullStr On The Group of Strong Symplectic Homeomorphisms
title_full_unstemmed On The Group of Strong Symplectic Homeomorphisms
title_short On The Group of Strong Symplectic Homeomorphisms
title_sort on the group of strong symplectic homeomorphisms
topic Hamiltonian homeomorphisms
hamiltonian topology
symplectic topology
stromg symplectic homeomorphisms
C0 symplectic topology
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462010000300004
work_keys_str_mv AT augustinbanyaga onthegroupofstrongsymplectichomeomorphisms