Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification

This paper presents a stacked sparse auto-encoder (SSAE) based deep learning method for an electronic nose (e-nose) system to classify different brands of Chinese liquors. It is well known that preprocessing; feature extraction (generation and reduction) are necessary steps in traditional data-proce...

Full description

Bibliographic Details
Main Authors: Wei Zhao, Qing-Hao Meng, Ming Zeng, Pei-Feng Qi
Format: Article
Language:English
Published: MDPI AG 2017-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/12/2855