Nonstationary Stochastic Bandits: UCB Policies and Minimax Regret
We study the nonstationary stochastic Multi-Armed Bandit (MAB) problem in which the distributions of rewards associated with arms are assumed to be time-varying and the total variation in the expected rewards is subject to a variation budget. The regret of a policy is defined by the difference in th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Open Journal of Control Systems |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10460198/ |