EDXRF and Machine Learning for Predicting Soil Fertility Attributes

Soil fertility evaluation is fundamental for sustainable agricultural practices, often relying on conventional laboratory methods. These methods, while accurate, are labor-intensive, time-consuming, and require chemical reagents. Spectroscopic sensors, such as energy-dispersive X-ray fluorescence (...

Full description

Bibliographic Details
Main Authors: José Vinícius Ribeiro, Felipe Rodrigues dos Santos, José Vitor de Oliveira Alves, Mariana Spinardi Fossaluza, Igor Marques Nogueira, José Francirlei de Oliveira, Graziela M. C. Barbosa, Marcelo Marques Lopes Müller, Renata Alesandra Borecki, Cristiano Andre Pott, Fábio Luiz Melquiades
Format: Article
Language:English
Published: Universidade Estadual de Londrina 2024-11-01
Series:Semina: Ciências Exatas e Tecnológicas
Subjects:
Online Access:https://ojs.uel.br/revistas/uel/index.php/semexatas/article/view/51475