Towards Full Forward On-Tiny-Device Learning: A Guided Search for a Randomly Initialized Neural Network
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger privacy, data safety and robustness to adversa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/17/1/22 |