Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
Abstract Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artific...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-09-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-96872-w |