Hopfian additive groups of rings
A group is called Hopfian if it is not isomorphic to any of its proper factor groups, or, equivalently, any of its epimorphisms on itself is an isomorphism, i.e., an automorphism. This property was first proved by the Swiss mathematician H. Hopf for fundamental groups of Riemann surfaces....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Saratov State University
2025-02-01
|
Series: | Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
Subjects: | |
Online Access: | https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2025/02/15-23kaigarodov.pdf |