Spectroscopic Confirmation of Obscured AGN Populations from Unsupervised Machine Learning
We present the result of a spectroscopic campaign targeting active galactic nucleus (AGN) candidates selected using a novel unsupervised machine-learning (ML) algorithm trained on optical and mid-infrared photometry. AGN candidates are chosen without incorporating prior AGN selection criteria and ar...
Principais autores: | , , , |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
IOP Publishing
2024-01-01
|
coleção: | The Astronomical Journal |
Assuntos: | |
Acesso em linha: | https://doi.org/10.3847/1538-3881/ad28b4 |