Spectroscopic Confirmation of Obscured AGN Populations from Unsupervised Machine Learning

We present the result of a spectroscopic campaign targeting active galactic nucleus (AGN) candidates selected using a novel unsupervised machine-learning (ML) algorithm trained on optical and mid-infrared photometry. AGN candidates are chosen without incorporating prior AGN selection criteria and ar...

ver descrição completa

Detalhes bibliográficos
Principais autores: Raphael E. Hviding, Kevin N. Hainline, Andy D. Goulding, Jenny E. Greene
Formato: Artigo
Idioma:English
Publicado em: IOP Publishing 2024-01-01
coleção:The Astronomical Journal
Assuntos:
Acesso em linha:https://doi.org/10.3847/1538-3881/ad28b4