Improvement of LSTM-Based Forecasting with NARX Model through Use of an Evolutionary Algorithm
The reported work aims to improve the performance of LSTM-based (Long Short-Term Memory) forecasting algorithms in cases of NARX (Nonlinear Autoregressive with eXogenous input) models by using evolutionary search. The proposed approach, ES-LSTM, combines a two-membered ES local search procedure (2ME...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-09-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/11/18/2935 |